The Crystal Structure of NPCl₂(NSOCl)₂

By J.C. van de Grampel and Aafje Vos

Laboratorium voor Structuurchemie, Rijksuniversiteit Groningen, Bloemsingel 10, Groningen, The Netherlands

(Received 26 February 1968)

Crystals of cyclo-tri- μ -nitrido-dichlorophosphorus-bis(oxochlorosulphur), NPCl₂(NSOCl)₂, are monoclinic, space group $P2_1/n$. The cell dimensions are a=11.649, b=7.705, c=11.092 Å, $\beta=101.37$, Z=4units NPCl₂(NSOCl)₂. The structure was determined from a three-dimensional Patterson synthesis and refined by anisotropic least-squares analysis of 1010 independent reflexions, R=0.044. The molecules contain a six-membered ring of P, N and S atoms in the sequence -N-P-N-S-N-S-. The phosphorus atom carries two chlorine atoms and each sulphur atom is linked to one oxygen and one chlorine atom. Mean bond lengths, with estimated standard deviations for the individual values in parentheses, are N-P=1.585 (0.013), P-Cl=1.957 (0.006), S-Cl=2.018 (0.006) and S-O=1.421 (0.013) Å. The N-S bond lengths differ slightly and can be divided into two groups. Average values are 1.578 (0.013) Å for the N-S bonds of the group S-N-S and 1.540 (0.013) Å for the remaining N-S bonds. The endocyclic angles at P and S are 115.3 (0.7)° and 115.0 (0.7)° respectively. The angle S-N-S is 120.3 (0.8)°; for the angles P-N-S values of 123.5 (0.8)° and 120.6 (0.8)° were obtained.

Introduction

In addition to the structure of α -sulphanuric chloride (see I; Hazell, Wiegers & Vos, 1966), it was thought interesting to investigate the structure of β -sulphanuric chloride. Attempts to prepare the latter compound by thermal decomposition of Cl₃PNSO₂Cl according to Kirsanov (1952) failed, however.

Instead, a compound of composition $PN_3S_2Cl_4O_2$ was obtained by applying Kirsanov's method in a slightly modified way (van de Grampel & Vos, 1963). We tentatively assumed the compound to be $NPCl_2(NSOCl)_2$ (II), *i.e.* (NSOCl)₃ with one of the SOCl groups replaced by PCl_2 . This hypothesis was confirmed by the X-ray work described in this paper.

Experimental

 $NPCl_2(NSOCl)_2$ (van de Grampel & Vos, 1963) was recrystallized from light petroleum. The colourless needles obtained (m.p. 94.9–95.9°C) appeared to be stable to moist air and to irradiation by X-rays.

The unit cell is monoclinic, space group $P2_1/n$ with $a=11.649\pm0.003$, $b=7.705\pm0.003$, $c=11.092\pm0.003$ Å, $\beta=101.37\pm0.13^{\circ}$, Z=4 formula units,

 $D_x = 2.13 \text{ g.cm}^{-3}$, $D_m = 2.14 \text{ g.cm}^{-3}$, $\mu(\text{Mo}) = 17.8 \text{ cm}^{-1}$. The needle axis of the crystals coincides with the **b** direction. The cell dimensions were obtained from a powder diffractogram recorded with the Philips diffractometer PW1050/30, silicon lines being used for calibration [$\lambda(\text{Cu } K\alpha) = 1.5418 \text{ Å}$].

For the intensity measurements a single crystal of dimensions $0.22 \times 0.23 \times 0.39$ mm was mounted in a Hanff capillary. Integrated equi-inclination Weissenberg photographs about the *b* axis were taken for k=0 to 8 with zirconium filtered molybdenum radiaton. Use was made of the multiple film technique. The reflexions 0k0 were obtained from the zero layer about [101]. For 1146 independent reflexions non-zero intensities were measured with a densitometer (Smits & Wiebenga, 1953). No corrections for absorption were applied $(\mu R \simeq 0.2)$.

To put the $|F|^2$ values on the same scale each k layer was compared with the first layer about the b axis by recording parts of the integrated equi-inclination Weissenberg photographs of the two layers on the same photographic film. Care was taken that all the experimental conditions, such as the output of the X-ray tube, the integrated area and the exposure time, were kept the same for the two layers. To correct for the difference in path length through the film due to the difference in equi-inclination angle (v_k and v_1 for layer k and layer 1 respectively) the intensities of the kth layer were multiplied by (cos v_1)/(cos v_k). After correction for this factor comparison of the different photographs obtained gave the scaling factor for all k layers.

Determination of the structure

The four molecules lie at general positions in the unit cell. Approximate coordinates for the P,N,S and Cl atoms could be found from a three-dimensional Patterson synthesis calculated with the 1146 independent reflexions with non-zero intensity. The x and z parameters of the oxygen atoms were determined from an [010] error synthesis and the y parameters of these atoms were estimated from the assumed geometry of the molecule. Preliminary two-dimensional refinement in the [010] projection was carried out by successive cycles of difference Fourier syntheses and structure factor calculations.

During the three-dimensional least-squares refinement 136 reflexions with unreliable intensities, because of extinction or strong variation in background, were not considered. These reflexions are marked with an asterisk in Table 3. The isotropic least-squares refinement was carried out on a Zebra computer using Schoone's program (Schoone, 1961), R=0.094. At this stage of the refinement a three-dimensional difference Fourier synthesis clearly showed the thermal motion of the atoms to be anisotropic.

Most cycles of the anisotropic least-squares refinement were done by Rollett on the Mercury computer in Oxford (Rollett, 1961). The last few cycles were calculated on a TR4 computer with a program written by Palm & Peterse according to Cruickshank's scheme (Cruickshank, 1961*a*). For this part of the refinement the atomic scattering factors used were those from Moore (1963). The weighting scheme adopted was

 $w = [1 + \{(|F(obs)| - 23)/23\}^2]^{-1}$.

 Table 1. Fractional atomic coordinates with standard deations (in parentheses) in units of the last decimal position as calculated by the least-squares program

	x	y .	Ζ
Р	-0.1701(2)	0.1539 (3)	-0.0514(2)
N(1)	-0.0566(5)	0.2073 (9)	0.0454 (5)
N(2)	-0.1608(5)	0.4879 (8)	0.1074 (5)
N(3)	-0.2745(5)	0.2894 (9)	-0.0683(5)
S(1)	-0.0528(2)	0.3606 (3)	0.1349 (2)
S(2)	-0.2830(2)	0.4224(2)	0.0335 (2)
Cl(1)	-0.2230(2)	-0.0752(3)	-0.0081(2)
Cl(2)	-0.1296(2)	0.1201(3)	-0.2125(2)
Cl(3)	-0.0621(2)	0.2524 (3)	0.2973 (2)
Cl(4)	-0.3583(2)	0.2951(3)	0.1579 (2)
O(1)	0.0531 (5)	0.4559 (9)	0.1554 (6)
O(2)	-0.3576(5)	0.5657 (8)	-0.0090(5)

After the refinement the value of $w|\Delta F|^2$ appeared to be independent of |F(obs)|. The index R dropped to 0.044.

In Tables 1 and 2 the final parameters with standard deviations as calculated by the least-squares program are listed. The calculated structure factors in Table 3 are based on the parameters of Tables 1 and 2. As the molecule could not be considered as a rigid body (see discussion) the coordinates were not corrected for libration effects.

Discussion of the structure

Molecular structure

The molecule NPCl₂(NSOCl)₂ is shown in Fig. 1. The bond lengths and angles and their estimated standard deviations are listed in Table 4. In calculating these standard deviations with the formulae of Cruickshank & Robertson (1953), the standard deviations in the coordinates obtained from the least-squares program (Table 1) were multiplied by a factor of two.

The six-membered ring of the molecule is not completely planar, but has a deformed chair shape (Fig. 2). As may be seen from Table 5, N(1) lies in the plane through P, S(1) and S(2), whereas N(2) and N(3) are at

Fig. 1. Molecule of NPCl₂(NSOCl)₂.

Table 2. Thermal parameters U_{ij} (in 10^{-4} Å²) of the anisotropic temperature factor

Standard deviations are given in parentheses.

	U_{11}	U_{22}	U33	$2U_{12}$	$2U_{23}$	$2U_{31}$
Р	362 (9)	352 (19)	314 (8)	26 (16)	-37 (16)	171 (13)
N(1)	379 (32)	453 (39)	405 (32)	128 (55)	-63(53)	128 (51)
N(2)	452 (34)	295 (34)	378 (30)	125 (54)	-95 (5 1)	65 (51)
N(3)	338 (30)	500 (40)	333 (29)	-43 (55)	-138(52)	2 (46)
S(1)	336 (8)	424 (10)	307 (7)	-160(16)	51 (15)	76 (12)
S(2)	396 (9)	355 (10)	296 (7)	197 (16)	69 (14)	198 (13)
Cl(1)	812 (16)	359 (12)	845 (17)	-190(22)	8 (22)	573 (27)
Cl(2)	753 (14)	630 (15)	354 (9)	206 (23)	- 193 (18)	351 (18)
Cl(3)	512 (11)	796 (16)	335 (8)	186 (22)	347 (20)	79 (15)
Cl(4)	504 (11)	714 (15)	607 (12)	153 (22)	406 (22)	567 (20)
O(1)	448 (32)	787 (49)	661 (38)	- 390 (61)	88 (69)	-40 (55)
O(2)	576 (33)	527 (35)	426 (28)	389 (55)	222 (53)	177 (50)

J. C. VAN DE GRAMPEL AND AAFJE VOS

Table 3. Comparion of 10F(obs) and 10F(calc)

Reflexions marked by an asterisk were not included in the refinement.

нк	L F0	FC	ни	. L	FO FC	ни	ι,	0 FC	н	×ι	FC	FC	н	×ι	۶0	FC	нк		FC	нкц	. 0	FC	H K L	FC FC
-14 0 -12 0 -10 0 -8 0	0 15/ 0 249 0 544 0 350	169 -198 # -569 -341	-4 1 -3 1 -2 1 -1 1	2 2 2 1	32 322 50 -325 66 -104 71 1081	-2 1 -1 1 -1 1	11 10 11 3 11 3 11 1	1 142 4 135 • 8 -385 7 -154	-2012	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	203 349 166 719	218 368 -145 • -745	-1 0 1	3 5 3 5 3 5 3 5	498 184 562 562	476 -176 551 -571	-11 4 -8 4 -6 4 -5 4	141 312 662	141 -303 -644 73 •	0 5 3 1 5 3 2 5 3 3 5 3	3°2 3 147 1 230 -2 479 4	08 47 34 65	-3 6 4 -2 6 4 -1 6 4 0 6 4	37 -47 286 298 157 159 396 -44(
-2 0 -11 0 -9 0	0 700 1 341 1 479 1 378	-352 -642 * 328 -487 -392		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	107 -461 179 -460 187 -391	-10 1 -6 1 -4 1 -2 1	12 1 12 4 12 4 12 4 12 4	9 -142 4 116 * 4 103 8 520	-11	2 7 8 2 8 2 8	433 92 322 286	-432 12C -33C -279	5 9 11	3 5 5 5	193 138 147 147	180 -143 -161 -152	-4 4 -3 4 -2 4 -1 4	203 332 147 240	205 326 137 243	5 5 3 6 5 3 7 5 3 8 5 3	258 2 157 1 46 138 1	45 83 72 • 36	3 6 4 4 5 6 4 6 4	101 -101 221 -246 249 -250 55 86 •
-5 0 -3 0 -1 0 1 0	1 359 1 387 1 405 1 958	-356 -371 367 # 841 #	5 1 6 1 7 1 8 1	~ ~ ~ ~	65 757 04 -295 07 -521 32 334	-9 1 -7 1 -2 1 3 1	13 13 13 15 13 25 13 25	9 -132 7 -144 8 -259 3 202	-6 -4 -3 -1	2288	35C 203 442 129	145 347 213 450 135	-13 -8 -7 -6	3 6 3 6 3	157 230 120 516 617	-103 -240 -135 546 657	1424	193 728 746 544	-207 -705 727 546 210	10 5 3 11 5 3 -11 5 4 -10 5 4	138 -1 129 1 175 1	93 • 53 19 77	10 6 4	175 173 55 85 4 193 -178 46 -68 •
30 50 70 90	1 792 1 525 1 212 1 461	758 537 198 -485	12 1 -11 1 -10 1 -9 1	2 2 2 2 3 2 4 3 2 4 4 4 4 4 4 4 4 4 4 4	30 237 12 194 05 -425 21 224	0 1 -13 2 -10 2 -8 2	14 16 0 24 0 21 0 19	6 -139 9 -230 2 200 3 165	0 1 3	2 8 2 8 2 8	378 322 157 166	375 -327 147 * -165	-4 -2 -1	3 6 3 6 3 6 3 6	387 240 46 230	-410 240 -101 # -207	5 4 6 4 8 4 10 4	470 83 129 221	-481 98 -122 -205	-7 5 4 -6 5 4 -5 5 4	111 1 92 1 271 2 498 9	17 01 28 02	-3 6 5	55 84 8 221 236 267 278 221 -205
13 0 -10 0 -6 0 -4 0	1 230 2 258 2 258 2 470	-249 232 -245 457	-7 1	3 1 3 2 3 2	66 -157 87 -380 12 214 76 287	-5 2	0 92	1 904 1 316 2 -678 0 -693	• • 12	22822	286 147 175 160	-278 -153 -17C -161	1 2 3 4	3 6 3 6 3 6	286 249 147 203	279 246 -122 -166 #	-12 4 -11 4 -8 4 -7 4	203 184 157 322	-206 157 138 -315	-3 5 4 -1 5 4 0 5 4 2 5 4	433 4 332 -3 442 -4 175 1	52 41 42 72	1 6 5 3 6 5 4 6 5 6 5	24C -251 64 98 • 111 108 74 •74
0 0 2 0 4 0 6 0	2 838 2 2396 2 1069 2 405	774 • -2229 • 1066 394	0 1 1 2 1 3 1	3 4 3 2 3 1 3 2	70 461 95 -296 47 144 95 -293	-12 2 -11 2 -10 2	0 35	0 -351 9 -128 4 -174 3 -191	-8 -7 -6 -2	29922	12C 184 212 193	-192 -119 -192 202 201	-9 -7	363737	203 138 304	-478 170 155 -373	-4 4 -3 4 -1 4	130 92 101 5 369	-119 80 -113 -371	4 5 4 8 5 4 9 5 4 11 5 4	332 3 34 3 120 -1 -2 1	37 25 · 13 19 •	7 6 5 -10 6 6 -8 6 6 -7 6 6	203 -210 157 -138 258 263 157 -147
-13 0 -9 0 -7 0 -5 0	3 295 3 295 3 249 3 147	371 -303 249 144	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2 3 5 3 1 3 1	76 265 16 511 01 -107 20 153	-9 2 -7 2 -6 2	1 12 1 15 1 15 1 27	9 120 7 146 7 143 6 244	1 2 4	2 9 9 2 9 9 9	304 138 193 249	286 99 • -21C • 254	-1 0 1 2	3 7 3 7 3 7 3 7 3 7	608 461 111 111	607 474 -150 * 109	1 4 2 4 3 4 5 4	83 157 396 221	-100 -152 396 219	-9 5 5 -7 5 5 -3 5 5	2/6 2 1°3 -1 46 - 37 -	57 • 57 • 37	-3 6 6	147 154 240 239 258 -255 120 127
-1 0 11 0 -14 0	3 205 3 249 4 166 4 203	-279 257 177 206	9 1 -12 1 -11 1	3 3 4 1	15 -435 50 -380 57 157 40 -254 57 -141	-3 2	1 23	5 6/1 0 -191 5 410 5 1370	-9	2 9 2 10	130 193 175 304	173 -201 -165 -308	3 4 5 6	37737	267 304 230 111	-270 -315 228 111	6 4 7 4 -11 4 -10 4	160	-107 * 162 129 -123	-3 5 5	212 2 147 1 120 - 451 -4	08 51 95 • 62	3 6 6 6 6 6 8 6 6 -8 6 7	203 174 55 86 * 166 -162 147 -64 *
-10 0 -6 0 -4 0 -2 0	4 157 4 212 4 498 4 1640	161 2(2 -516 -1640	-8 1 -7 1 -6 1		38 -132 46 -95 95 1005 88 485	2 2 2 3 2 4 2 2 5 2	1 51 1 91 1 87 1 23	495 -867 -852 -280	-9	2 10 2 10 2 10 2 10 2 10	276 24C 221 120	281 -247 -221 -139	-12 -9 -8	37 38 38 38	166 193 221 193	-164 173 -213 -190	-5 4 -2 4 -1 4	59 532 532 532 532	-335 -63 • 407	4 5 5 9 5 5 -10 5 6 -9 5 6	2'3 2 184 1 74 1 175 -1	28 55 18 • 78	-4 6 7 -2 6 7 -1 6 7 1 6 7	221 231 55 -76 203 -205 166 156 221 -221
0 0 4 0 6 0 8 0	4 461 4 746 4 286 4 240 4 240	471 743 -285 245 249	-3 1 -2 1 -1 1 0 1	10	31 -921 14 -962 15 1062 47 -125	6 2 7 2 10 2 13 2	1 1 1 24 1 16	84 • -109 -251 168	-1 12 3	2 10 2 10 2 10 2 10	129 23C 175 157	157 22C •157 17C	-7 -5 -4 -3	3 8 3 8 3 8 3 8	221 166 433 157	-239 175 -432 -158	34	654 267 415	-252 -384 72	-7 5 6 -6 5 6 -5 5 6 -2 5 6	276 2 83 111 -1 147 1	87 87 16 • 43 ·	2 6 7 3 6 7 4 6 7 10 6 8	249 250 74 97 74 92 184 -160
-11 0 -9 0 -7 0 -5 0	5 193 5 682 5 332 5 627	-197 710 347 -613	4 1 5 1 7 1 8 1	4 1 4 3 4 2	66 -157 46 52 50 -359 12 220	-11 2 -10 2 -9 2 -8 2	2 19 2 1J 2 31 2 20	225 65• -316 -205	-5	2 11 2 11 2 11 2 11 2 11	24C 341 129 197	257 -341 127 -157	-1 0 1 2	2 8 2 8	111 101 203 350 322	115 • -191 363 322	8 4 -12 4 -11 4 -10 4	203	107 94 -185 166 195	-1 5 6 0 5 6 1 5 6 2 5 6	313 -3 313 3 203 1	73	-6 6 8 -5 6 8 -2 6 8	100 151 249 -237 74 -87 230 245 221 -196
-1 0	5 138 5 184 5 986 5 378	151 187 -990 -401	11 1 -10 1 -9 1 -8 1	4 1 5 2 5 2	84 -166 57 -167 76 -285 49 276 4	-7 2	2 48 22 27 2 33 2 24	-499 210 326 243	3 -9 -8	2 11 2 11 2 12 2 12 2 12	129 267 92 92	-121 267 123 -153 •	4 6 7 -8	38 38 39	106 111 111 304	140 100 109 -314	-5 4 -3 4 0 4	341 111 350	-363 -92 -365 45	5 5 6 -9 5 7 -8 5 7	147 -1 212 -1 240 2 157 -1	18 12 1	2 6 8 3 6 8 10 6 9 -8 6 9	74 109 • 101 10C 175 138 175 154
-12 0 -10 0 -6 0	6 313 6 258 6 322 6 111	-324 -229 290 -111	-5 1 -4 1 -3 1 -2 1	5 7 5 2 5 1	6 756 21 -187 38 122 2 114	-2 2 -1 2 0 2	2 77 2 112 2 87 2 22	-731 1119 797 211	-5 -3 -2	2 12 2 12 2 12 2 12 2 12	332 157 147 221	-348 155 160 -232	-5	3 9 3 9	166 258 378 249	-174 263 -371 -249	1 4 7 4 -10 4	175	144 • 245 114 178	-6 5 7 -5 5 7 -3 5 7 -1 5 7	129 1 267 2 1 1 -1 212 -2	21	-1 6 9 2 6 9 3 6 9	267 -262 74 119 • 230 -235 212 216
-2 0 2 0 6 0	6 912 6 682 6 765 6 424	913 667 -788 -434	-1 1 0 1 2 1 3 1	5 2 2	7 278 4 406 2 -218 12 -207	3 2 2 2 3 6 2 2	2 53 2 17 2 36 2 47	539 -161 -375 -491	-3 0 -1	2 12 2 13 2 13 2 14	166 175 184 166	158 -166 -185 -186	1 4 5 6	3 9 3 9	166 166 184 111	120 • 179 191 110	-5 4 -4 4 -2 4	166 138 92	-160 -155 -102 -114	2 5 7 5 5 7 6 5 7	64 1 ⁴ 4 -1 2.3 -1 184 1	58 52 58 57	-6 6 10 -5 6 10 -4 6 10 -2 6 10	157 -162 129 132 92 108 157 -144
-13 0 -11 0 -7 0 -3 0	7 193 7 184 7 663 7 783 7 147	190 -193 -667 805	4 1 5 1 6 1 7 1	5 2 2 5 2 5 5 2 5	01 103 76 -278 21 231 49 -248	7 2 5 2 9 2 10 2	2 24 2 15 2 25 2 15 2 15 2 15 2 15	247 211 -268 -153	-11 -9 -8 -7	3030	64 46 461 405	-89 102 * -477 -379 *	-320	3 10 3 10 3 10 3 10 3 10	193 258 138 184	180 -281 152 -177	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	276 184 221 240	-260 211 -163 -217	-5 5 8 -4 5 8 -3 5 8 -2 5 8	369 -3 175 1 240 2 157 1	5 40 54	-1 6 10 0 6 10 -4 6 11 -3 6 11	111 -98 166 -16C 175 176 83 95
3 0 5 0 7 0 9 0	7 571 7 267 7 221 7 166	556 290 -659 * -152	11 1 -10 1 -9 1 -6 1	5 1 6 2 6 1 6 2	6 156 12 -219 75 181 12 -104	-11 2 -10 2 -9 2 -8 2	3 23 3 13 3 3 3 31	228 128 313 -317	-5 -4 -3 -2	3 0 3 0 3 0	46 286 949 230	-70 * 192 * 884 -257	-6	3 10 3 10 3 11 3 11 3 11	212 166 230 157 157	159 234 -154 -176	7 4 -10 4 -9 4	147 184 147 147 230	159 171 -116 -238	1 5 8 2 5 8 4 5 8 -7 5 9	2-3 -1 55 64 3-4 -3 258 -2	2 92 • · 21	0 6 13 11 7 0 •9 7 0 •7 7 0	175 149 258 230 74 -97 276 239
-14 0 -12 0 -4 0 4 0	8 184 8 212 8 488 8 553	163 -178 -501 583	-4 1 -3 1 -2 1 -1 1	6 6 6 5 6 4	-601 -678 -678 -678 -678 -678 -678 -678 -678	-7 2 -6 2 -5 2 -3 2	3 18- 3 37- 3 13- 3 47- 3 47-	-179 -393 141 474	-1 -12 -9 -8	$ \begin{array}{ccc} 3 & 0 \\ 3 & 1 \\ 3 & 1 \\ 3 & 1 \\ 1 \\ 3 & 1 \\ 1 \\ 1 \end{array} $	451 129 203 46	-463 -13(211 84 •	-2	3 11 3 11 3 11 3 12	221 415 111 166	-217 419 -144 157	-7 4 -5 4 -4 4 -3 4	166 359 55 74	165 356 81 • 95	-5 5 9 -4 5 9 -1 5 9	129 1 129 -1 267 2 120 -1	35 38 77 24	-5 7 0 -4 7 0 -1 7 0 -8 7 1	147 -153 221 208 138 -215 * 129 125
-13 0 -11 0 -9 0 -7 0	9 230 9 378 9 230 9 138	222 -373 210 135	1 1 5 1 6 1 7 1	6 4 6 2 6 1	3 -444 21 222 6 144 7 133	1 2 0 2 1 2 2 2	3 148 3 28 3 41 3 29	-1332 298 -398 -280	-6 -5 -3 -1	$ \begin{array}{cccc} 3 & 1 \\ 3 & 1 \\ 3 & 1 \\ 3 & 1 \end{array} $	525 101 157 415	-529 -118 -141 427	-6 -1 0 1	3 12 3 12 3 12 3 12 3 12 3 12	147 120 147 120 175	-159 132 -139 -118 -186	1 4 3 4 -11 4 1 -10 4 1	203 212 322 147	-191 -214 -308 135 -129 •	1 5 9 5 5 9 -8 5 10 -6 5 10 -5 5 10	184 1 166 -1 249 -2 129 -1 83	42 46 38	-/ / 1 -6 / 1 -4 / 1 0 / 1 1 / 1	138 -138 166 16C 111 -106 92 9C 83 86
-3 0 -1 0 1 0 3 0	9 203 9 221 9 240 9 221	-182 -223 227 -212	8 1 9 1 10 1 -13 1	6 2 6 1 6 2 7 1	231 7 143 3 -207 3 193	3 2 2 5 2 6 2	3 12 3 28 3 15 3 57	138 291 169 572	024	$ \begin{array}{cccc} 3 & 1 \\ 3 & 1 \\ 3 & 1 \\ 3 & 1 \end{array} $	212 276 534 101	-279 • 32C • 504 11C	-2 -1 -1 -2	3 13 3 13 3 13 3 13 3 13	147 138 240 166	153 127 -227 -192	-8 4 1 -6 4 1 -4 4 1 -3 4 1	221 55 240 55	-205 109 • 230 84 •	-3 5 10 -1 5 10 2 5 10 -7 5 11	138 1 295 -2 350 3 92 -1	46 96 51 36 #	2 7 1 4 7 1 6 7 1 -9 7 2	405 -459 184 -145 138 132 240 -225
-10 0 1 -8 0 1 -6 0 1	9 221 0 286 0 184 0 157 0 286	217 271 -180 -133 -298	-12 1 -6 1 -5 1	7 1	10 153 1 9 -359 12 -125 1 15 404	9 2 10 2 -12 2 -11 2	3 5 3 15 4 30 4 35	-184 -184 -316 376	12 -10 -9 -7	3 1 3 2 3 2 3 2	138 369 55	-14C 355 111 • -112 •	-3	3 15	203 249 147 258	-180 -242 -147 250	-1 4 1 0 4 1 2 4 1 -9 4 1	203 157 55 166	-202 155 98 • -162	-5 5 11 -4 5 11 -3 5 11 4 5 12 -3 5 13	1.8 1 147 -1 154 -1 157 -1	20 20 39	-7 7 2 -4 7 2 -3 7 2 -2 7 2 0 7 2	369 374 74 104 304 260 • 304 -322 92 -88
0 0 1 8 0 1 -9 0 1 -7 0 1	0 120 0 230 1 534 1 304	-113 234 556 -294	-3 1 -2 1 -1 1 0 1	7 3 7 2 7 5	0 -813 8 -358 0 229 6 -492	-9 2 -6 2 -5 2 -4 2	4 470 4 240 4 460 4 250	-467 243 453 230	-6 -5 -4 -3	3 2 3 2 3 2 3 2	498 175 977 516	502 -184 -949 -506	-2109	4 0 4 0 4 0 4 1	249 276 350 83	259 346 * -363 82	-6 4 1 -4 4 1 -3 4 1 -1 4 1	256 55 230	230 -99 • -236 116	-7 6 0 -6 6 0 -5 6 0 -4 6 0	1°3 -1 3'4 3 3'4 -3 258 -2	44 * 03 33 60	1 7 2 2 7 2 3 7 2 5 7 2	147 -142 157 197 + 55 -80 + 184 -196
-5 0 1 -1 0 1 1 0 1 5 0 1	1 221 1 387 1 193 1 304 2 359	-237 -384 -174 298	1 1 2 1 4 1 5 1 7 1	7 10 7 20 7 4	0 -96 • 01 -106 10 244 4 436 3 211	-2 2 -1 2 0 2	4 15 4 31 4 28 4 7	-1011 -130 + -303 290 -96 +	-1 0 1 2 3	3 2 3 2 3 2 3 2	220 341 322 276 415	-356 341 -274 405	-7		138 111 304 359	125 174 -283 354	0 4 1 1 4 1 2 4 1 0 4 1		142 211 -117 = 128	-3 6 0 -2 6 0 -1 6 0 0 6 0	2:2 -2 2:2 2 2:2 3 266 -2 2:0 -2	30 55 • 63 • 62	9 7 2 11 7 2 -6 7 3 -3 7 3	193 -168 212 201 212 198 111 -99 203 221
-4 01 -2 01 0 01 8 01	2 203 2 166 2 396 2 221	186 -136 -418 207	10 1 -12 1 -9 1 -6 1	7 20 8 24 8 14 8 14	3 197 10 218 10 110 148	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 7) 4 54 4 14 4 4	-712 559 -140 -76 •	5 6 7 8	3 2 3 2 3 2 3 2	276 175 304 498	-267 177 312 516	-3	4 1 4 1 4 1	129 405 663 129	-127 402 -684 -99 •	-5 4 1 -9 5 -7 5 -6 5	141	-148 -189 87 271	-6 6 1 -5 6 1 -4 6 1 -3 6 1	55 175 1 212 -2 184 -1	69 80 04 95	0 7 3 2 7 3 3 7 3 4 7 3	92 106 12C -127 55 -65 111 95
-7 0 1 -5 0 1 -3 0 1 1 0 1	3 184 3 387 3 230 3 157	-182 392 233 137	-3 1 -3 1 -2 1	8 2 8 2 8 2	9 236 5 81 • 6 •286 6 92 •	6 2 7 2 8 2 -12 2	4 24 4 35 4 30 5 15	-215 380 339 157	10 11 12	32323	295 23C 193 74	292 -222 -173 73	234	4 1 4 1 4 1 4 1	451 396 442 313	-423 367 421 -299	-5 5 -4 5 -3 5 -2 5	230 230 240 365	-247 -249 254 401	-2 6 1 -1 6 1 0 6 1 1 6 1	120 -1 184 2 92 -1 129 2	03 • 58 • 42 • 00 •	8 7 3 -9 7 4 -7 7 4 -5 7 4	184 -196 166 -173 286 278 341 -348
2 0 1 -10 1 -9 1 -8 1	3 184 4 175 0 396 0 424 0 396	168 410 432 -396	1 1 2 1 3 1 4 1	8 3 8 2 8 2 8	-342 9 -250 5 300 4 105 •	-7 2 -7 2 -6 2 -4 2	5 25 5 25 5 43 5 26	-255 -256 423 -289	-9 -7 -6 -5	3 3 3 3 3 3	203 111 470 608	184 -111 -462 617	10 -12	4 1 4 2 7	175 157 166 322	189 155 -160 325	-8 5 -7 5 -6 5 -5 5	192	-273 190 118 58	-12 6 2 -10 6 2	221 2 23 2 193 1 147 -1	28 19 99	-1 7 4 0 7 4 1 7 4	166 162 258 257 92 94 12C -103
-6 1 -5 1 -4 1 -3 1	0 221 0 405 0 1050 -	-214 401 1019 14:1	5 1 6 1 9 1 10 1	8 1 8 1 8 1 8 2	7 -164 18 166 • 15 164 13 191	-3 2 -2 2 -1 2 1 2	5 313 5 931 5 230 5 663	303 -914 -201 665	-4 -3 -2	3 3	240 24C 37 433	229 186 * -66 *	-7 -6 -5	4 2 2 4 2 2 4 2 2	295 184 37 369	297 177 -42 • 377	-3 5	341 129 433 424	339 147 -488 444	-5 6 2 -4 6 2 -3 6 2 -2 6 2	258 2 376 -4 193 -1 271 2	55 06 62 • 19	9 7 4 -6 7 5 -4 7 5 -2 7 5	166 -157 111 105 295 -315 101 109
-1 1 -1 1 -14 1 -12 1 -11 1	0 295 1 138 1 120	238 * -132 133	-8 1 -7 1 -6 1	9 J1 9 10 9 12	3 312 1 115 0 -153 9 250	3 2 5 2 6 2 7 2	5 15 5 15 5 21 5 21	159 -149 228 -130 *	3456	3 3 3 3 3 3	387 83 37 157	-374 77 6C =	-1	4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	304 147 820 258 553	135 790 -255	3 5 5 5 5 7 5	138	130 71 -222 -230		147 -1 240 -3 359 4 374 3	76 • 15 • 29 •	-5 7 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-9 1 -8 1 -7 1 -6 1	1 184 1 203 1 470 1 111	192 163 = 467 -116	-3 1 -2 1 -1 1 1 1	9 19 9 14 9 33 9 24	3 -197 7 -143 2 339 9 -252	8 2 10 2 -11 2 -10 2	5 230 6 134 6 313	141 * 208 160 317	7 8 -9	3333334	92 138 129 322	104 156 138 332	2 3 4 5	4 2 4 2 4 2 4 2	111 286 719 396	95 284 -699 -383	-12 5 -10 5 -8 5 -7 5	2 138 2 111 2 230 2 193	-137 -133 -249 184	4 6 2 5 6 2 2 6 6 2 2 8 6 2 2	111 -1 64 240 2 166 -1	12 90 58 48	5 7 6 6 7 6 -7 7 7 -6 7 7	175 151 83 96 129 111 129 120
-5 1 -3 1 -2 1 -1 1	1 83 1 1456 - 1 240 1 1677 -	241 1275 •	6 1 7 1 -13 1	9 13	8 -102 7 -152 2 -142 • 8 156	-7 2 -6 2 -7 2 -6 2 -7 2 -6 2 -7 2 -7 2	6 599 6 230 6 129 6 44	-174 625 -231 -156 -77 *	-65	3434	35C 212 958 240	377 201 904 -217	*13	4 2 2 3 3	230 83 193 184	-233 84 196 -178 -143	-5 5 -4 5 -3 5 -2 5	2 580	-585 -101 233 478	-8 6 3 -7 6 3 -6 6 3	100 1 295 2 157 1 111 1	92 55 02	-4 7 7 -2 7 7 0 7 7	23C -235 55 93 23C -202 83 -88
1 1 2 1 3 1 4 1	608 746 921 154	552 -683 -881 193	-10 1 -8 1 -6 1	12 19 10 19 10 29	7 -156 3 191 8 259 1 -342	-3 2 -2 2 -1 2 0 2	6 41 6 221 6 314 6 120	-496 -215 313 126	1235	3434	378 405 369 101	-376 413 -371 -97	-8	4 3 4 3 4 3 4 3	83 230 55 304	79 -225 83 * 298	2 5 5 5 5 5	2 193 157 341 2 74	191 160 344 87	-4 6 3 -2 6 3	46 3+6 -4 129 1 55	90 * 13 44 69 *	-7 7 8 -3 7 8 -1 7 8	157 136 184 193 286 -285 138 123
5 1 6 1 7 1 9 1	92 1 166 1 894 1 313	-108 170 911 321	-3 1 -2 1 -1 1 1 1	10 32 10 17	3 -104 2 325 5 -161	1 2 2 3 2 4 2 4 2	6 4.5 6 350 6 5-7	-415 -102 -354 529	6 7 8 10	3 4 3 4	267 120 166	282 145 • 168 177	-3	4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	359 562 101 387	353 543 71 * 372	0 7 5 7 5 -11 5	461 2 120 2 175 3 147	-105 -163 -159	1 6 3 2 6 3 4 6 3 5 4 7	1v3 ·1 221 ·2 37 193 ·1	v2 24 59 * 90	-2 7 9	130 -132 286 273 175 -145 193 -164 240 234
-11 1 -10 1 -9 1 -8 1	2 184 2 387 2 193 2 442	-186 398 176 •	3 1 5 1 -9 1 -7 1	10 10 10 24 11 25 11 13	1 118 0 -238 8 237 8 119	7 2 11 2 -9 2 -7 2	6 3 3 6 2 3 7 157 7 221	318 170 158 237	-11 -8 -7	3 5 5 5	24G 55 74 47C	241 104 • 112 • 472	5 5 6 9	4 3 4 3 4 3	111 498 286 55	-130 • -511 -283	-7 5 5 -5 5 -5 5 -5 5	212 160 564	-215 182 -568 -544	-11 -10 -9	92 -1 120 -1 55 212 2	04 12 56 28	-2 7 11	166 143
-7 1 -6 1	2 350 2 341 2 369	-359 332 388	-6 1 -4 1	$ \begin{array}{cccc} 11 & 36 \\ 11 & 29 \\ 11 & 6 \end{array} $	9 -383 5 308 4 88	-6 2 -4 2 -3 2	7 296	316 -147 139	-3	3 5 3 5	562 433	-581	1C 11 -13	4 3	92 203 230	126 -184 -216	-2 5	184 92 5 249	102	-5 6 6	136 1 111 1 1 1 -	24 14 • 84		

Table 4. Intramolecular distances and angles

The estimated standard deviations in units of the last decimal position are given in parentheses. For numbering of atoms see Fig. 1.

$\begin{array}{l} N(1)-P \\ N(3)-P \\ N(1)-S(1) \\ N(2)-S(1) \\ N(2)-S(2) \\ N(3)-S(2) \\ P &Cl(1) \\ P &Cl(2) \\ S(1) & -Cl(3) \end{array}$	1.584 (13) Å 1.586 (13) 1.538 (13) 1.577 (13) 1.579 (13) 1.542 (13) 1.960 (6) 1.954 (6) 2.007 (6)
S(2) - Cl(4)	2.028 (6)
S(1) -O(1)	1.415 (14)
S(2) -O(2)	1.427 (12)
$\mathbf{P} \cdots \mathbf{S}(1)$	2.749 (5)
$\mathbf{P} \cdots \mathbf{S(2)}$	2.717 (5)
$S(1) \cdots S(2)$	2.737 (5)
$N(1) \cdots N(2)$	2 ·636 (17)
$N(2) \cdots N(3)$	2.622 (17)
$N(1) \cdots N(3)$	2.678 (17)

$\begin{array}{l} N(1) - P - N(3) \\ N(1) - S(1) - N(2) \\ N(2) - S(2) - N(3) \\ P - N(1) - S(1) \\ S(1) - N(2) - S(2) \\ S(2) - N(3) - P \end{array}$	115·3 (7)° 115·6 (7) 114·3 (7) 123·5 (8) 120·3 (8) 120·6 (8)
Cl(1)-P— $Cl(2)$	104.4 (3)
C(3) - S(1) - O(1)	103.7(0)
CI(4) - S(2) - O(2)	100.5 (5)
N(1) - P - CI(1)	109.2 (5)
N(3) - P - Cl(1)	110.6 (5)
N(1) - P - Cl(2)	109.5 (5)
N(3) - P - Cl(2)	107.3 (5)
N(1) - S(1) - O(1)	114.6 (8)
N(2) - S(1) - O(1)	110.2 (8)
N(1) - S(1) - Cl(3)	105.1 (5)
N(2) = S(1) = C(3)	104.5 (5)
N(2) = S(2) = O(2)	110.6 (7)
N(3) = S(2) = O(2)	113.3 (7)
N(2) = S(2) = O(2)	105.6 (5)
IN(2) - S(2) - CI(4)	103.0 (3)
N(3) - S(2) - CI(4)	106.0 (2)

distances of 0.29 and 0.26 Å respectively from this plane. The difference in location of N(1) and N(3) relative to the plane PS(1)S(2) indicates that the molecule in the crystal does not have the symmetry m which may be expected for a free molecule NPCl₂(NSOCl)₂. Table 6 shows that the best plane through P, Cl(1), Cl(2) and N(2) is a pseudo mirror plane only. The deviation from the symmetry m is also reflected by the unequal values of the endocyclic angles at N(1) and N(3), 123.5 and 120.6 respectively. The arrangement of the molecules in the crystal (see below) indicates that the deviations from symmetry m are probably a result of intermolecular interactions.

Table 5. Distances to the plane PS(1)S(2)

The plane obeys the equation 0.2787X + 0.6060Y - 0.7450Z = 0.3106 with $X = x \sin \beta$, Y = y and $Z = z + x \cos \beta$ (Å).

N(1) N(2)	– 0·005 Å – 0·294	Cl(3) Cl(4)	1·893 Å 1·990
N(3)	-0.262	O(1)	-0.794
Cl(1)	1.686	O(2)	-0.655
	-1.3/2		

Table 6. Distances to the 'best' plane through P, Cl(1), Cl(2) and N(2)

The plane obeys the equation 0.9373X - 0.2235Y + 0.2676Z = -2.1417 with $X = x \sin \beta$, Y = y and $Z = z + x \cos \beta$ (Å).

Р	0·0079 Å	Cl(1)	–0•0028 Å
N(1)	1.3479	Cl(2)	-0.0029
N(2)	-0.0022	Cl(3)	1.9625
N(3)	-1.3294	Cl(4)	-1.5128
S(Ì)	1.3884	O(1)	2.3536
S(2)	-1.3411	O(2)	- 2.4674

The molecule of NPCl₂(NSOCl)₂ may be compared with both α -(NSOCl)₃ (Hazell, Wiegers & Vos, 1966) and (NPCl₂)₃ (Wilson & Carroll, 1960) (Table 7). As observed for α -(NSOCl)₃ and (NPCl₂)₃, the endocyclic bonds in NPCl₂(NSOCl)₂ are short in comparison with the 'single' N-S and N-P bonds in H₃NSO₃ (1.76 Å, Sass, 1960) and H₃NPO₃⁻⁻ (1.77 Å, Cruickshank, 1964) respectively. This shortening has been ascribed to d_{π} - p_{π} overlap of sulphur (phosphorus) *d* orbitals and nitrogen *p* (*sp*²) orbitals (Craig & Paddock, 1962; Cruickshank, 1961 *b*). As a result of this overlap double bonds are formed which may be delocalized according to the resonance scheme:

Table 7. Conformations and bond lengths (in Å) for α -(NSOCl)₃ and (NPCl₂)₃

Standard deviations for bond lengths in units of the last decimal position are given in parentheses.

Ring conformation	α -(NSOCl) ₃ chair shaped	(NPCl ₂) ₃ planar
N-P	_	1.59 (2)
N–S	1.571 (4)	`
P-Cl		1.98 (1)
S-Cl	2.003 (3)	
S-O	1.407 (7)	

However, unlike $(NPCl_2)_3$ and α - $(NSOCl)_3$, in $NPCl_2(NSOCl)_2$ delocalization does not seem to be complete as may be seen from the N–S bond lengths. Whereas the chemically equivalent N–S bonds have equal length, 1.540 Å on average for N(1)–S(1) and

655

N(3)-S(2) and 1.578 Å for N(2)-S(1) and N(2)-S(2), small differences, 0.038 Å on average, occur between chemically non-equivalent N-S bonds. This may be due to the fact that the contribution of the sulphur and phosphorus d orbitals to the π bonding in the ring is slightly different. The same phenomenon, delocalization of the double bonds with small variations in bond lengths, has been found in the molecules $NP(C_6H_5)_2$ (NPCl₂)₂ and [NP(C₆H₅)₂]₂NPCl₂(Mani, Ahmed & Barnes, 1965, 1966). The N-P bond lengths in these molecules are shown in Fig. 3. The sequence of the N-P bond lengths in molecule III (Fig. 3.) may be explained as follows. The stronger electronegativity of the chlorine ligands makes the orbitals of the phosphorus atom of the PCl₂-groups more suitable for $d_{\pi}-p_{\pi}$ bonding in the ring than those of the $P(C_6H_5)_2$ -groups (Craig & Magnusson, 1956). Therefore the N-PCl₂ bonds are expected to be shorter than the $N-P(C_6H_5)_2$ bonds. Furthermore in the group $Cl_2P-N-P(C_6H_5)_2$ the p_{π} electron and the sp² lone pair electrons are more involved in the N-PCl₂ bond than in the N-P(C_6H_5)₂ bond. Due to this the double bond character of the former bond will increase at the cost of the double bond char-

Fig.2. Side view of the six-membered ring (a) as observed in NPCl₂(NSOCl)₂ and (b) the same ring in the undistorted chair conformation.

acter of the latter. It may thus be understood that in molecule III the bonds $N-P(C_6H_5)_2$ are the largest, whereas the $N-PCl_2$ bonds of the uniformly substituted group $Cl_2P-N-PCl_2$ are larger than the other $N-PCl_2$ bonds.

By the same reasoning the sequence of the N-P bond lengths in molecule IV can be explained. Comparison of the three molecules in Fig. 3 shows that the sequence of the lengths of the N-S bonds in NPCl₂(NSOCl)₂ (II) is analogous to that of N-PCl₂ in III. This suggests that in NPCl₂(NSOCl)₂ the *d* orbitals of sulphur are more suitable for $d_{\pi}-p_{\pi}$ bonding in the ring than the *d* orbitals of phosporus. The relatively small value of the angle N-P-N at PCl₂ in II, in comparison with the value of 120° in the uniformly substituted N-P ring compounds, supports the view that the double bond character of the N-P bonds in II is relatively small.

Arrangement of the molecules

Fig. 4 shows that the molecules are arranged in planes parallel to (101). The shortest intermolecular distances are observed between O(2') and the chlorine atoms Cl(2) and Cl(3) of the neighbouring molecules. These Cl···O distances are on average 0.13 Å shorter than the sum of the van der Waals radii. It may be noticed that the bond S(2')–O(2') lies almost in the plane through Cl(2') O(2') and Cl(3) and bisects the angle Cl(2)···O(2')··· Cl(3) (Fig.5), the angles S(2')–O(2')···Cl(2) and S(2')–O(2')···Cl(3) being 109.9° and 111.7° respectively. This suggests that the lone pairs of oxygen atoms are involved in the intermolecular interaction. It is rea-

Table 8. Comparison of $U_{ij}(calc)$ and $U_{ij}(obs)$ based on the T_{ii} and ω_{ii} values of Table 9

The differences $U_{ij}(\text{calc}) - U_{ij}(\text{obs})$ are listed (in 10⁻⁴ Å²) relative to the directions **a**^{*}, **b** and **c**. The standard deviations in parentheses are those of $U_{ij}(\text{obs})$.

Fig. 3. Comparison of the molecules NPCl₂(NSOCl)₂ (II), NP(C₆H₅)₂(NPCl₂)₂ (III) and [NP(C₆H₅)₂]₂NPCl₂ (IV).

sonable to assume that the strong $Cl \cdots O$ interactions cause the deviations from symmetry m, which are observed for the molecule in the crystalline state.

Thermal motion

The translation tensor T and the libration tensor ω which gave the best least-squares agreement between corresponding $U_{ij}(\text{calc})$ and $U_{ij}(\text{obs})$ values were calculated according to Cruickshank's (1956) method. Comparison of the $U_{ij}(\text{calc})$ and $U_{ij}(\text{obs})$ values in Table 8 shows that the molecule cannot be considered as a rigid body performing translations and librations about its centre of mass. Especially for the atoms Cl(1) and Cl(4), the observed thermal parameters are larger than the calculated ones. This may indicate that in the P-Cl and S-Cl bonds internal (deformation) vibrations take place. The fact that, relative to the calculated U_{ij} values, the thermal motion is smaller for Cl(2) and Cl(3) than for Cl(1) and Cl(4) may be attributed to the strong Cl...O interaction described above.

Although the molecule cannot be described as a rigid body a rough impression of its thermal movement could be obtained. The magnitudes and directions of the principal axes of the T and ω tensors are given in Table 9. It may be seen that translation is smallest in a direction almost perpendicular to the plane PS(1)S(2).

Table 9. The values of T_{ii} along, and ω_{ii} about, the principal axes

The angles between the principal axes and the directions \mathbf{a}^* , \mathbf{b} and \mathbf{c} are α , β and γ respectively; δ is the angle with the plane PS(1)S(2).

	$(in 10^{-3} Å^2)$	α(°)	β(°)	γ(°)	δ(°)
	21	102	125	38	85
Translation	30	155	66	86	3
	33	68	45	52	4
	ω_{ii}				
	[in (°)2]	α(°)	β(°)	γ(°)	δ(°)
	9.2	59	35	77	28
Libration	18.4	145	56	98	12
	22.0	104	97	16	59

Calculations were done at the Groningen University Computing Centre. The least-squares analysis was partly carried out by Dr J.S.Rollett in Oxford. We thank Professor E.H.Wiebenga for his interest during the course of this investigation and Drs R.Olthof-Hazekamp for programming the calculations.

References

- CRAIG, D. P. & MAGNUSSON, E. A. (1956). J. Chem. Soc. p. 4895.
- CRAIG, D. P. & PADDOCK, N. L. (1962). J. Chem. Soc. p. 4118.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 754.
- CRUICKSHANK, D. W. J. (1961a). Computing Methods and the Phase Problem in X-ray Crystal Analysis. London: Pergamon Press.

Fig. 4. Projection of the structure of NPCl₂(NSOCl)₂ along the b axis.

Fig. 5. Part of the structure of NPCl₂(NSOCl)₂ projected along [100] on to the plane (100).

- CRUICKSHANK, D. W. J. (1961b). J. Chem. Soc. p. 5486.
- CRUICKSHANK, D. W. J. (1964). Acta Cryst. 17, 671.
- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.
- GRAMPEL, J. C. VAN DE & VOS, A. (1963). Rec. Trav. chim. Pays-Bas 82, 246.
- HAZELL, A. C., WIEGERS, G. A. & Vos, A. (1966). Acta Cryst. 20, 186.
- KIRSANOV, A. V. (1952). J. gen. Chem. Moscow, 22, 93.
- MANI, N. V., AHMED, F. R. & BARNES, W. H. (1965). Acta Cryst. 19, 693.
- MANI, N. V., AHMED, F. R. & BARNES, W. H. (1966). Acta Cryst. 21, 375.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169.
- ROLLETT, J. S. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis. London: Pergamon. SASS, R. L. (1960). Acta Cryst. 13, 320.
- SCHOONE, J. C. (1961). Computing Methods and the Phase Problem in X-ray Crystal Analysis. London: Pergamon.
- SMITS, D. W. & WIEBENGA, E. H. (1953). J. Sci. Instrum. 30, 280.
- WILSON, A. & CARROLL, D. F. (1960). J. Chem. Soc. p. 2548.